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Subgraph lemma

Fix constants ε, δ > 0 and let G be a graph with partition V1, . . . , Vr from the regularity lemma. In many
applications our first step is to “clean up” G by removing all edges that are either inside the partition classes,
between pairs of classes that are not ε-regular, or between classes that have density < δ. This procedure results
in a graph G′ (depending on ε and δ).

1: Find a function f such that e(G) ≤ e(G′) + f(1r , ε, δ)n
2.

Solution: We calculate what edges are deleted. Inside each part, we get r ·
(dn/re

2

)
≤

1
rn

2. Between parts, that are not ε-regular, we get εr2
⌈
n
r

⌉2 ≤ 2εn2. Finally, if density

is less than δ, we get δ
(
r
2

) ⌈
n
r

⌉2 ≤ 2δn2.

e(G) ≤ e(G′) +

(
1

r
+ 2ε+ δ

)
n2.

Now define the (ε, δ)-reduced graph1 R of G as follows. The vertices of R are the partition classes V1, . . . , Vr
and two classes Vi, Vj are connected by an edge if the pair is ε-regular and has density ≥ δ. That is, R has an
edge if the two corresponding classes have edges in G′. This implies that

e(R)δ
⌊n
r

⌋2
≤ e(G′) ≤ e(R)

⌈n
r

⌉2
.

Many properties of the original graph G are inherited by the reduced graph R.

The embedding lemma has the following consequence for the reduced graph.

Lemma 1 (Subgraph lemma2). Suppose F is an f -vertex (k+1)-chromatic graph. If G is F -free and δ ≥ 2ε1/f ,
then the (ε, δ)-reduced graph R is Kk+1-free.

Our goal is to use the regularity lemma to prove a version of stability theorem for extremal graphs.. We will
use the following stability theorem for Kk+1.

Theorem 2 (Füredi, 2010). Suppose G is an n-vertex Kk+1-free graph with e(G) = e(Tk(n))− t. Then G can
be obtained from a complete k-partite graph (on n vertices) by adding and removing at most 3t total edges.

We are now ready to prove a version of first stability theorem.

Theorem 3 (“weak” first stability theorem). For any α > 0 and any (k + 1)-chromatic graph F , there exists
β > 0 and n0 such that if G is an F -free n-vertex graph with n > n0 and

e(G) >

(
1− 1

k

)
n2

2
− βn2,

then G can be obtained from a complete k-partite graph by adding and removing at most αn2 total edges.

Proof. (Füredi, 2010) Let us apply the regularity lemma to G with parameters ε and m > 1
ε . Then there exists

M = M(ε,m) such that any graph on n ≥M many vertices has an equipartition V1, . . . , Vr with all but at most
εr2 pairs of classes are ε-regular and m ≤ r < M .

Fix δ > 2ε1/|F |.

1Also often called the cluster graph or skeleton (graph).
2The condition on the size of δ can be replaced with the much weaker δ > ε1/k

2

.
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2: Clean up G by removing edges inside each class, not regular pairs or between pairs with density < δ. How
much is removed? (Find final answer not containing r)

Solution: Construct a graph G′ by removing edges in each class Vi and removing
edges between any two classes that are either not ε-regular or have density < δ. In
total the number of edges removed from G is at most(

1

r
+ 2ε+ δ

)
n2 ≤ (3ε+ δ)n2.

Let R be the (ε, δ)-reduced graph of G. Each edge in R represents at most dnr e
2 edges in G′.

3: Find a lower bound on e(R)
⌈
n
r

⌉2
.

Solution:

e(R)
⌈n
r

⌉2

≥ e(G′) ≥ e(G)− (3ε+ δ)n2 >

(
1− 1

k

)
n2

2
− (3ε+ δ + β)n2.

For n large enough we have

e(R)
⌈n
r

⌉2
≤ e(R)

(n
r

)2
+ εn2.

4: Combining the above bounds and solve for e(R). Use e(Tk(r)) in the final answer.

Solution:

e(R) >

(
1− 1

k

)
r2

2
− (3ε+ δ + β)r2 ≥ e(Tk(r))− (4ε+ δ + β)r2.

Put t = e(Tk(r))− e(R) ≤ (4ε+ δ + β)r2 and apply Theorem 2 to R (as it is Kk+1-free).

5: What does the application of Theorem 2 to R mean for G′?

Solution: That is, R can be made into a complete k-partite graph by adding or
removing at most 3t edges. For n large enough this corresponds to changing at most

3t
⌈n
r

⌉2

≤ 3t
(n
r

)2

+ εn2 ≤ (13ε+ 3δ + 3β)n2

edges to make G′ into a complete k-partite graph.

6: Finish the proof by considering what edges were removed from G to get G′.

Solution: We removed at most (3ε+ δ)n2 edges to get G′ from G so in total we need
to add or remove

αn2 = (16ε+ 4δ + 3β)n2

edges to make G into a complete k-partite graph. Thus for any given α > 0 we can
choose β, ε, δ each small enough to satisfy the theorem.
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Lemma 4. Let H be a k-partite graph with classes C1, . . . , Ck each of size at most ` and let q be the number
pairs of distinct classes Ci, Cj such that there is at least one edge between Ci, Cj. If for 2 ≤ s ≤ t, there is no
Ks,t with the class of size s contained in any Ci, then

e(H) ≤ 1

2
(2q)1−1/s`2−1/s(t− 1)1/sk1/s + q`s.

Proof. For a vertex x ∈ H, let di(x) be the number of neighbors of x in Ci. Furthermore, let P be the set of
pairs (x, i) such that x is a vertex in H and di(x) > 0.

7: Find an upper bound on |P | in terms of q and ` and simplify
∑

(x,i)∈P di(x).

Solution: It is easy to see
|P | ≤ 2q`

and ∑
(x,i)∈P

di(x) = 2e(G).

Now, as in the proof of KST, let us double count the pairs (x, S) such that x is a vertex of H and S is a subset
of size s of the neighbors of x in some class Ci.

8: Upper bound the number of (x, S) by first picking S. Simplify the upper bound by using rough estimates.

Solution: Fixing S we have that any set S ⊂ Ci has at most (t − 1) common
neighbors, so the number of pairs (x, S) is at most

(t− 1)
k∑
i=1

(
|Ci|
s

)
≤ (t− 1)k

(
`

s

)
≤ (t− 1)k

`s

s!
.

On the other hand, if we fix x ∈ H, then x has di(x) neighbors in Ci, so the number of pairs (x, S) is∑
(x,i)∈P

(
di(x)

s

)
.

9: Use Jensen’s inequality on the sum above and get a lower bound, simplify slightly.

Solution: The sum above has |P | terms and the function
(
di(x)
s

)
is convex, so by

Jensen’s inequality we have the number of pairs (x, S) is at least

|P |
( 1
|P |
∑

(x,i)∈P di(x)

s

)
= |P |

(
2e(G)/|P |

s

)
≥ |P |(2e(G)/|P | − (s− 1))s

s!
.

10: Combine the two estimates for the number of pairs (x, S) and solving for e(G) gives the theorem.

Solution:
|P |(2e(G)/|P | − (s− 1))s ≤ (t− 1)k`s

2e(G)/|P | − (s− 1) ≤ (t− 1)1/sk1/s`|P |−1/s

2e(G) ≤ (t− 1)1/sk1/s`|P |1−1/s + (s− 1)|P | ≤ (t− 1)1/sk1/s`(2q`)1−1/s + 2sq`
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Notice in the following theorem that one of the forbidden graphs is linear in n.

Theorem 5. Fix integers k ≥ 3 and s ≥ 2 and constants c, δ > 0. Then, if G is a graph on n (large enough)
vertices, that contains neither Kk nor Ks,t where t = dcne, then

e(G) ≤ c1/s
(

1− 1

k − 1

)1−1/s n2

2
+ δn2.

Proof. For ε = (δ/8)k and m ≥ max{8δ , k}, let M = M(ε,m) be as in the statement of the regularity lemma.
We will prove the theorem for graphs G with n ≥ 2Ms/δ many vertices. Let G be a graph on n vertices with no
Kk nor Ks,t subgraph and let V1, V2, . . . , Vr be the partition given by the regularity lemma with the parameters
above.

11: Do a “cleaning up” G , denoted by G′ and show that many edges remain. Use density between clusters
δ/4 for the clean-up. Show that e(G) ≤ e(G′) + δ

2n
2.

Solution: We begin by “cleaning up” G as in the embedding lemma, i.e., remove all
edges inside each cluster Vi and between any pair of distinct clusters that are not are
(δ/8)k-regular or have density less than δ/4. Let G′ be the resulting graph. Therefore,
the number of edges removed is at most(

1

r
+ 2ε+

δ

4

)
n2 ≤

(
δ

8
+
δ

8
+
δ

4

)
n2 ≤ δ

2
n2.

Thus

e(G) ≤ e(G′) +
δ

2
n2.

Now let R be the (ε, δ/4)-reduced graph, i.e., R is the graph with the clusters of G as vertices and two clusters
are adjacent if they are (δ/8)k-regular and have density at least δ/4 (in G).

12: Give an upper bound on the number of edges in R. (Hint: use Kk-free)

Solution: By the subgraph lemma we have that R is Kk-free and thus, by Turán’s
theorem, the number of edges in R is at most(

1− 1

k − 1

)
r2

2
.

13: Apply (Lemma 4) with q = e(R) and ` = dn/re on G′ to finish the proof.

Solution: ClearlyG′ must beKs,t-free, so we can apply the previous lemma (Lemma 4)
with q = e(R) and ` = dn/re to G′ to get

e(G′) ≤ 1

2

((
1− 1

k − 1

)
r2

)1−1/s

`2−1/s(t− 1)1/sr1/s + r2`s.

Observe that t− 1 ≤ cn and r2`s ≤Mns ≤ δ
2n

2, so we have

e(G′) ≤ c1/s

(
1− 1

k − 1

)1−1/s
n2

2
+
δ

2
n2
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