Math 608:24 1

Subgraph lemma

Fix constants ¢, > 0 and let G be a graph with partition Vi,...,V, from the regularity lemma. In many
applications our first step is to “clean up” G by removing all edges that are either inside the partition classes,
between pairs of classes that are not e-regular, or between classes that have density < §. This procedure results
in a graph G’ (depending on € and 9).

1: Find a function f such that e(G) < e(G') + f(1,€,6)n?

Solution: We calculate what edges are deleted. Inside each part, we get r - (["/ ﬂ) <
—n . Between parts, that are not e-regular, we get er’ { W < 2en?®. Finally, if density
is less than 9, we get 5(2) (ﬂ < 26n2.

1 ,
e(G) < e(G") + <— + 2¢ + 5) n’
,

Now define the (¢, d)-reduced grapkﬂ R of GG as follows. The vertices of R are the partition classes Vi,..., V.
and two classes V;, V; are connected by an edge if the pair is e-regular and has density > . That is, R has an
edge if the two corresponding classes have edges in G’. This implies that

n

e(R)§ L;f < e(G") < e(R) Hz.

r
Many properties of the original graph G are inherited by the reduced graph R.

The embedding lemma has the following consequence for the reduced graph.

Lemma 1 (Subgraph lemm. Suppose F is an f-vertex (k+1)-chromatic graph. If G is F-free and § > 2¢1/7,
then the (e, 0)-reduced graph R is Kj.y-free.

Our goal is to use the regularity lemma to prove a version of stability theorem for extremal graphs.. We will
use the following stability theorem for Kjyq.

Theorem 2 (Fiiredi, 2010). Suppose G is an n-vertex Ky 1-free graph with e(G) = e(Tx(n)) —t. Then G can
be obtained from a complete k-partite graph (on n vertices) by adding and removing at most 3t total edges.
We are now ready to prove a version of first stability theorem.

Theorem 3 (“weak” first stability theorem). For any a > 0 and any (k + 1)-chromatic graph F, there ezists
B > 0 and ng such that if G is an F-free n-vertex graph with n > ng and

e(G) > <1 - ]1) ”22 — n?,

then G can be obtained from a complete k-partite graph by adding and removing at most an?® total edges.

Proof. (Fiiredi, 2010) Let us apply the regularity lemma to G with parameters ¢ and m > % Then there exists
M = M (e, m) such that any graph on n > M many vertices has an equipartition V1, ..., V, with all but at most
er? pairs of classes are e-regular and m < r < M.

Fix 6 > 2¢Y/1F1

! Also often called the cluster graph or skeleton (graph).
2The condition on the size of § can be replaced with the much weaker § > €'/ K2
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2: Clean up G by removing edges inside each class, not regular pairs or between pairs with density < §. How
much is removed? (Find final answer not containing )

Solution: Construct a graph G’ by removing edges in each class V; and removing
edges between any two classes that are either not e-regular or have density < ¢. In
total the number of edges removed from G is at most

1
(— + 2¢ + (5) n* < (3¢ 4 6)n*.
-

Let R be the (¢, 0)-reduced graph of G. Each edge in R represents at most (%]2 edges in G'.
3: Find a lower bound on e(R) (%]2

Solution:
n

¢(R) H2 > (@) > e(G) — (3¢ + 8)n? > (1 - %) ”; — (3¢ + 8+ B)n.

For n large enough we have
n

e(R) {—12 <e(R) (E)Q + en?.

r r
4: Combining the above bounds and solve for e(R). Use e(Tk(r)) in the final answer.

Solution:

1 2
e(R) > <1 — E) % — (Be 4+ 5+ B)r* > e(Ti(r)) — (de + 5 + B)r?.
Put t = e(Tj(r)) — e(R) < (4¢ + 6 + B)r? and apply Theorem [2|to R (as it is Ky q-free).

5: What does the application of Theorem [2| to R mean for G'?

Solution: That is, R can be made into a complete k-partite graph by adding or
removing at most 3t edges. For n large enough this corresponds to changing at most

2 2
3t (ﬁ—‘ < 3t <E) +en? < (13€ + 35 + 38)n”

r r
edges to make G’ into a complete k-partite graph.

6: Finish the proof by considering what edges were removed from G to get G’.

Solution: We removed at most (3¢ + d)n? edges to get G’ from G so in total we need

to add or remove
an® = (16¢ + 49 + 38)n

edges to make GG into a complete k-partite graph. Thus for any given o > 0 we can
choose (3, ¢, 0 each small enough to satisfy the theorem.

O
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Lemma 4. Let H be a k-partite graph with classes C1,...,Cy each of size at most £ and let q be the number
pairs of distinct classes C;, Cj such that there is at least one edge between C;, C;. If for 2 < s < t, there is no
K with the class of size s contained in any C;, then

1
e(H) < 5(24,)1*1/%2*1/8@ — D)YRYS 1 ges.
Proof. For a vertex x € H, let d;(z) be the number of neighbors of x in C;. Furthermore, let P be the set of
pairs (z,7) such that z is a vertex in H and d;(z) > 0.

7: Find an upper bound on |P| in terms of ¢ and ¢ and simplify Z(w,i)eP d;(z).

Solution: It is easy to see
|P| < 2q¢

and

Now, as in the proof of KST, let us double count the pairs (x,S) such that = is a vertex of H and S is a subset
of size s of the neighbors of z in some class C;.

8: Upper bound the number of (z,S) by first picking S. Simplify the upper bound by using rough estimates.

Solution: Fixing S we have that any set S C C; has at most (¢t — 1) common
neighbors, so the number of pairs (z,5) is at most

S

(t — 1)2}3 (‘f‘) < (t— 1>k<i) < (t— 1)1%.

1=1
On the other hand, if we fix z € H, then x has d;(z) neighbors in C;, so the number of pairs (z,.5) is
. )
(z,i)eP
9: Use Jensen’s inequality on the sum above and get a lower bound, simplify slightly.

Solution: The sum above has |P| terms and the function (digj”:)) is convex, so by
Jensen’s inequality we have the number of pairs (z,.5) is at least

P (% Eirier c@(m)) _ 1P (2e<G>/|P\> > 1p RGP = (s = 1)

s s!

10: Combine the two estimates for the number of pairs (z,.5) and solving for e¢(G) gives the theorem.

Solution:
|P[(2e(G)/|P| — (s = 1)) < (T — k&
2e(G)/|P| — (s — 1) < (t — D)YEY | p|~V/s
2e(G) < (t — D)YVEEY0|P|*Y5 4+ (s — 1)|P| < (t — DY EY0(2¢0) Y + 25¢
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Notice in the following theorem that one of the forbidden graphs is linear in n.

Theorem 5. Fiz integers k > 3 and s > 2 and constants ¢,6 > 0. Then, if G is a graph on n (large enough)
vertices, that contains neither Ky nor Kg; where t = [cen], then

1 1-1/s n2
< 1/5 o . 2'
e(G) <c (1 k—l) 5 +n

Proof. For € = (§/8)% and m > max{},k}, let M = M(e,m) be as in the statement of the regularity lemma.
We will prove the theorem for graphs G with n > 2Ms/d many vertices. Let G be a graph on n vertices with no
K}, nor K subgraph and let Vi, V5, ..., V; be the partition given by the regularity lemma with the parameters
above.

11: Do a “cleaning up” G , denoted by G’ and show that many edges remain. Use density between clusters
d/4 for the clean-up. Show that e(G) < e(G") + $n?.

Solution: We begin by “cleaning up” G as in the embedding lemma, i.e., remove all
edges inside each cluster V; and between any pair of distinct clusters that are not are
(6/8)*-regular or have density less than §/4. Let G’ be the resulting graph. Therefore,
the number of edges removed is at most

1_|_2 +é 2< é+é+é 2<§2
P T =g T Tt =

0
e(G) < e(G") + §n2.
Now let R be the (¢,6/4)-reduced graph, i.e., R is the graph with the clusters of G as vertices and two clusters
are adjacent if they are (§/8)*-regular and have density at least 6/4 (in G).

Thus

12: Give an upper bound on the number of edges in R. (Hint: use Kj-free)

Solution: By the subgraph lemma we have that R is Kj-free and thus, by Turan’s
theorem, the number of edges in R is at most

1 72
1l——) —.
(1-555)5

13: Apply (Lemma [4]) with ¢ = e(R) and ¢ = [n/r] on G’ to finish the proof.
Solution: Clearly G’ must be K ;-free, so we can apply the previous lemma (Lemma )

with ¢ = e(R) and ¢ = [n/r] to G’ to get

/ 1 1 2 e 2—1/s 1/s,.1/s 2
€(G>§§ l—m T f (t—1> T +T’£S.

Observe that t — 1 < ¢n and r2ls < Mns < gn2, so we have

1 1-1/s 9 5
G(Gl> < Cl/s ( — m) n— + —n2
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